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Abstract

Statins represent the elective lipid-lowering strategy in hyperlipidemic and high cardiovascular-risk patients. Despite excellent safety and

tolerability, reversible muscle-related and dose-dependent adverse events may decrease a patient’s compliance. Large meta-analyses, post-

hoc and genetic studies showed that statins might increase the risk of new-onset diabetes (NOD), particularly in insulin-resistant, obese, old

patients. Race, gender, concomitant medication, dose and treatment duration may also contribute to this effect. Based on this evidence, to

warn against the possibility of statin-induced NOD or worsening glycemic control in patients with already established diabetes, FDA and

EMA changed the labels of all the available statins in the USA and Europe. Recent meta-analyses and retrospective studies demonstrated that

statins’ diabetogenicity is a dose-related class effect, but the mechanism(s) is not understood. Among statins, only pravastatin and pitavastatin

do not deteriorate glycemic parameters in patients with and without type 2 diabetes mellitus. Interestingly, available data, obtained in small-

scale, retrospective or single-center clinical studies, document that pitavastatin, while ameliorating lipid profile, seems protective against

NOD. Beyond differences in pharmacokinetics between pitavastatin and the other statins (higher oral bioavailability, lower hepatic uptake),

its consistent increases in plasma adiponectin documented in clinical studies may be causally connected with its effect on glucose metabolism.

Adiponectin is a protein with antiatherosclerotic, anti-inflammatory and antidiabetogenic properties exerted on liver, skeletal muscle, adipose

tissue and pancreatic beta cells. Further studies are required to confirm this unique property of pitavastatin and to understand the mechanism(s)

leading to this effect.

© 2014 Elsevier Ireland Ltd. All rights reserved.
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1. Statins and type 2 diabetes mellitus:

the state of the art

Several randomized-controlled trials have demonstrated

the benefits of lowering low-density-lipoprotein cholesterol

(LDL-C) with statins to reduce cardiovascular (CV) risk

in a wide range of populations, including patients with

type 2 diabetes mellitus (T2DM) [1–3]. Although statins are

safe, recent studies highlighted the possibility that they may

cause the development of new-onset diabetes (NOD) [4–

6]; however, this small risk varies with the baseline risk of

developing T2DM [6].

While atorvastatin, simvastatin, rosuvastatin, lovastatin

and fluvastatin generally deteriorate glycemic parameters in

patients with andwithout T2DM, pravastatin and pitavastatin

seem neutral [6]. The earliest evidence on these differences
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comes from a post-hoc data analysis from the Pravastatin or

Atorvastatin Evaluation and Infection Therapy – Thrombol-

ysis in Myocardial Infarction (PROVE-IT) 22 trial, where

3,382 patients without T2DM showed 0.30% and 0.12%

increase from baseline in glycated hemoglobin (HbA1c) with

atorvastatin 80mg and pravastatin 40mg, respectively [7].

To investigate statin-induced risk of developing T2DM,

Sattar et al. [5] performed a meta-analysis of 13 trials

including 91,140 patients without T2DM. Overall, standard-

dose statin was associated with a 9% increased risk for

T2DM over 4 years, with little heterogeneity between trials.

To corroborate this evidence, later, a post-hoc analysis

of the Stroke Prevention by Aggressive Reduction in

Cholesterol Levels (SPARCL) trial (N = 3,803) showed that

NOD developed in 166 of 1,905 patients randomized to

atorvastatin 80mg/day and in 115 of 1,898 subjects of the

placebo group (8.71%vs. 6.06%) [8]. TheCanadianNetwork

for Observational Drug Effect Studies Investigators [9]

study and a meta-analysis performed by Preiss et al. [4]

on data from five trials in which 32,752 participants

without baseline T2DM received intensive- versus standard-

dose statin, documented that among statins, those with
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higher potency are more likely to increase the risk of

NOD. Moreover, these effects seem to be dose-related [4].

NOD, which is more evident in patients with pre-existing

T2DM risk factors [8], elderly [5], women [10] and

Asians [11,12], is a cause for concern because long-term

T2DM is associated with a 2-fold increased CV risk [13,14].

Based on this evidence, FDA changed the labels of all

the available statins (pravastatin and pitavastatin included)

and of statin-containing combinations in the USA, includ-

ing warnings about the possibility of increased glycemia

and HbA1c, while EMA included the warning in the

product information of all the statins authorised in the

European Union and issued guidance on an increased

T2DM risk.

2. Is statin-induced risk of NOD a class effect?

Retrospective studies and a recent meta-analysis conducted

on 246,955 patients from 135 randomized-controlled trials

confirmed that statins increase T2DM risk, but no statistical

difference was seen among drugs and doses [12,15].

A population-based cohort study performed in 471,250

Canadians without T2DM showed that patients taking

atorvastatin, simvastatin or rosuvastatin had an increased

risk of developing T2DM versus pravastatin, fluvastatin and

lovastatin-treated patients and the order of diabetogenicity

was the same, regardless which statin was used for primary

or secondary prevention. Although similar results were

observed when grouping statins by potency, the risk of

incident T2DM associated with rosuvastatin became non-

significant when the dose was taken into account [16].

Nevertheless, all these results require confirmation in large-

scale, head-to-head clinical trials, since most of these

studies did not systematically assess T2DM incidence, were

underpowered to detect differences between statins, and

were retrospective [6].

Very recently, utilizing data from 20 randomized-con-

trolled trials, Swerdlow et al. [17] not only further docu-

mented the increased risk (odds ratio 1.12) of statin-induced

NOD, but also tried to understand the mechanism(s) of

this effect, using a genetic approach. When they studied

single-nucleotide polymorphisms (SNPs) near the gene

encoding for the 3-hydroxy-3-methylglutaryl-CoA (HMG-

CoA) reductase, previously demonstrated to be associated

with changes in LDL-C and evaluated their relationship with

waist circumference, body weight, body mass index (BMI),

insulinemia, glycemia and risk of T2DM, a slight but

significant increased risk of T2DM emerged. Interestingly,

since this effect is associated with an on-target reduction in

HMG-CoA activity, it implies that the risk of NOD cannot be

modified or avoided by new and more specific statins [17].

Moreover, the documented association with BMI may

suggest a mechanism downstream of HMG-CoA reductase

inhibition, by which increased body weight may increase

insulin resistance and diabetes. In fact, among the several

hypotheses raised, increases in caloric and fat intake during

statin treatment have been related to the onset of NOD [18].

Nevertheless, it has to be underlined that the magnitude

of the effect on caloric intake and BMI seems insufficient

to account for the increased risk of T2DM; moreover, this

effect is not dose-related, differently from statin-induced

NOD [17,19]. A recent interesting study demonstrated that

the prevalence of NOD is significantly lower in patients af-

fected by familial hypercholesterolemia (n = 14,296) vs their

unaffected relatives (n = 24,684) (odds ratio 0.35 and 0.51

respectively for LDL-receptor-negative and LDL-receptor-

defectivemutations) [20]. Twomajor explanations have been

proposed. The first, always connected to calories retention,

suggests that these patients are more willing to follow

lifestyle measures, thus contributing to decrease the risk of

NOD. The second relies on the fact that these patients may

experience a possible lack in activation of Sterol Regulatory

Element Binding Proteins (SREBPs), a fundamental step

in the mechanism of LDL-receptor increase [18]. In fact,

statins increase LDL-receptor expression through activation

of SREBP-1a, -1c and -2, which are also causally related to

insulin resistance [21]. If true, this may explain why the more

potent is the statin, the greater are the possible increase in

SREBPs and LDL receptors, as well as reduction in plasma

LDL-C and a higher incidence of NOD.

3. Mechanism of NOD: the role of adiponectin

To understand the mechanism(s) underlying statin-induced

NOD, several hypotheses have been raised [22–25]. Dif-

ferences in lipophilicity, effects on calcium channels in

b-cells, translocation of GLUT-4 transporter, decreases in
ubiquinones, isoprenoids, dolichols, intracellular insulin

signal transduction pathways, inhibition of adipocyte dif-

ferentiation, adiponectin production/secretion and altered

lipoprotein metabolism are the most frequently debated, but

none of these has been fully convincing. The effects of statins

on glucose in experimental models have been extensively

reviewed by Koh et al. [26] and, more recently, by Brault

et al. [23]. Many of these hypotheses rely on effects that

have been demonstrated in in-vitro or in-vivo experiments,
under conditions and at concentrations too far away from the

clinical setting, with the result that several of them have not

been confirmed in humans.

An interesting, very recent hypothesis has been raised

by Henriksbo et al. [27]. Fluvastatin, simvastatin, lovastatin

and atorvastatin dose-dependently increase the secretion

of the proinflammatory cytokine interleukin-1b (IL-1b) in

macrophages, an event that requires caspase-1 activity

and priming with an immunogenic agent (e.g. LPS). This

phenomenon indicates the activation of the inflammasome

containing the pattern recognition receptors (PRR), NOD-

like receptor family, pyrin domain containing 3 (NLRP3)/

caspase-1, which have been demonstrated to correlate with

the development of insulin resistance in rodents [28]. In

obese mice, the impaired insulin-stimulated glucose uptake

in adipose tissue by long-term fluvastatin treatment is
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dependent on the NLRP3 inflammasome. Fluvastatin acts

through the NLRP3/caspase-1 inflammasome in metabolic

and immune cells of adipose tissue (which contains en-

dogenous inflammasome-priming signals such as saturated

fatty acids, ceramides, products of hypoxic and necrotic fat

cells) and this mechanismmay contribute to the development

of T2DM. The clinical relevance is supported by the fact that

subjects with metabolic syndrome have increased activation

of the NLRP3 inflammasome in adipose-tissue macrophages

and that T2DM patients present elevated inflammasome

proteins NLRP3 and increased caspase-1 activation before

being treated [19,29,30]. It is worthwhile to remind that

activation of the NLRP3 inflammasome may be tissue- and

statin-specific: therefore this effect may be not exerted by

all statins and in all different populations. Even though

clinical studies with different statins are required to further

understand the mechanisms underlying the activation of

the inflammasome, adipose tissue seems deeply involved in

these mechanisms. The analysis of the effects of statins on

adiponectin, a protein that is secreted only by adipose tissue

and that plays anti-inflammatory and antidiabetic roles,

may help to comprehend the molecular driver of this

mechanism.

4. Clinical data assessing the beneficial effects of

pitavastatin on NOD

As previously mentioned, among the available statins,

pitavastatin seems neutral, if not beneficial, for biomarkers

of glucose metabolism, in T2DM and dyslipidemic patients,

as demonstrated by clinical trials and/or retrospective

studies [31]. In the CHIBA-Study subanalysis of diabetic pa-

tients, atorvastatin 10mg/day but not pitavastatin 2mg/day

significantly increased glycoalbumin. Pitavastatin had no

significant influence on fasting plasma glucose, HbA1c,

insulin or homeostatic model assessment (HOMA-IR). In

another retrospective analysis, atorvastatin 10mg/day, but

neither pravastatin 10mg/day nor pitavastatin 2mg/day,

significantly increased plasma glucose and HbA1c [32]. In

the LIVES study, pitavastatin significantly decreased HbA1c

in diabetic patients [33], even if on top of antidiabetic

therapy [34].

Finally, the large-scale Japan Prevention Trial of Diabetes

by Pitavastatin in Patients with Impaired Glucose Tolerance

(J-PREDICT) has been designed specifically to investigate

pitavastatin’s effect on T2DM [35]. Preliminary results show

that lifestyle modification plus 1–2mg/day of the statin

significantly reduced the cumulative incidence of T2DM in

1,269 high-risk patients with impaired glucose tolerance,

compared to lifestyle modifications alone [36,37] (Fig. 1).

In Table 1 we collected 31 clinical trials (where

pitavastatin was used alone or “head to head” with other

statins) reporting the effects of pitavastatin on glycemia

and insulinemia. Among the 18 studies in which only

pitavastatin was utilized, it did not alter these two parameters

in 15 studies, and even ameliorated them in 2. In only one

Fig. 1. Pitavastatin is associated with a lower incidence of diabetes in

Japanese patients with impaired glucose tolerance. Preliminary data from

the J-PREDICT study. From Odawara et al. [37], 73rd American Diabetes

Association, 2013.

study the use of the statin paralleled with a deterioration

of HbA1c [56]. In 6 of the 13 “head to head” studies,

pitavastatin was significantly better than the comparator

(pravastatin, rosuvastatin, atorvastatin, simvastatin), while in

the remaining six it was considered equivalent. Altogether,

the drug seems not to alter insulin resistance and not to

interfere with insulin synthesis and secretion. These con-

siderations support the hypothesis of a neutral or beneficial

effect of pitavastatin on glucose homeostasis. The recent

study by Cho et al. [67] is the only one documenting

glucose deterioration and incidence of NOD by pitavastatin.

Cho et al. retrospectively enrolled consecutive 3,680 patients

without T2DM or impaired fasting glucose who started

receiving a statin to lower their cholesterol and evaluated

the incidence of NOD according to the statin used for a

mean duration of 62.6±15.3 months. Pitavastatin showed

the strongest incidence (7.8%) of the development of NOD,

followed by rosuvastatin (6.5%) and pravastatin (5.8%),

while simvastatin (3.4%) seemed the most protective. As

reported by Cho et al., lack of data on compliance,

statin dosage and adherence, different numerosity among

cohorts, differences in patients’ baseline characteristics, but

mostly the fact that the newest pitavastatin may have been

administered to patients at higher risk of diabetes, suggest

caution in the interpretation of these results.

Based on these premises, it is of interest to understand

whether pitavastatin is “different” from the other statins

regarding NOD and glucose metabolism. In particular,

1. its pharmacological profile and

2. its effect on adiponectin in clinical studies

may unravel the mechanisms underlying the beneficial or

neutral effect on NOD documented in clinical studies.

4.1. Pitavastatin’s pharmacological profile

Thanks to their HMG-like moiety, statins are selective and

potent HMG-CoA reductase inhibitors, they do not show

relevant affinity toward other enzymes or receptors [68], and

their effects are strongly related to their target site of action.
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Table 1

Clinical trials reporting the effects of pitavastatin on glucose metabolism

First author [ref.] Population Effect on glucose/insulin Effect on lipids or other parameters

Sone [38] 33 T2DM patients. No significant increases in FPG. Decrease in TC, LDL-C and TG;

increase in HDL-C.

Kawai [39] 79 T2DM patients. No effect both on FPG and HbA1c. Decrease in LDL-C and TG.

Tokuno [40] 72 T2DM and hyperlipidemic patients. Pitavastatin or fenofibrate had no effect both on

FPG and HbA1c.

Decrease in LDL-C and TG.

Yamakawa [32] T2DM patients treated

with pitavastatin (n = 95),

atorvastatin (n = 99) or

pravastatin (n = 85).

Pitavastatin and pravastatin, but not atorvastatin

had no effect both on FPG and HbA1c.

Decrease in TC. Atorvastatin and

pravastatin lowered LDL-C.

Nomura [41] 64 T2DM patients. No effect on HbA1c. Decrease in TC, LDL-C and TG;

increase in HDL-C.

Increase in adiponectin.

Matsumoto [42] 25 HC patients. No changes in FBG, HbA1c. Decrease in TC, LDL-C and TG.

Kono [43] 94 patients with coronary artery disease. No changes in glucose levels. No changes in cholesterol;

improvements in peripheral

microvascular function.

Lee [44] 100 elderly T2DM patients. No effect on HbA1c. Decrease in TC, LDL-C and TG;

increase in HDL-C.

Arao [45] 16 patients with coronary artery disease. No effect both on FPG and HbA1c. Improved fasting and postprandial

dyslipidemia; reduced oxidative

stress and increased adiponectin.

Hounslow [46] 164 hyperlipidemic patients. No clinically relevant changes in FPG, HbA1c,

fasting insulin, HOMA-IR.

−

Mao [47] 55 T2DM and HC patients. No effect both on FPG and HbA1c. Decrease in TC, LDL-C and TG

Eriksson [48] 330 patients with HC or with combined

dyslipidemia and at least two CV

risk factors.

Pitavastatin: no change in FPG (12–56 weeks);

Simvastatin: no change in FPG at 12 weeks;

significant increase at 56 weeks.

Pitavastatin significantly increased

HDL-C, simvastatin decreased TG.

Gumprecht [49] Patients with T2DM and mixed

dyslipidemia.

Treatments for 12 and 56 weeks.

Week 12/56: atorvastatin (n = 141/64) increased

FBG (+7.2%/7.3%).

Pitavastatin: no effect both at 12 and 56 weeks.

Reductions in LDL-C and in

non-HDL-C not significantly

different between pitavastatin (−41%)

and atorvastatin (−43%).

Yokote [50] 45 Japanese HC patients. Atorvastatin increased glycoalbumin.

Pitavastatin tended to be safer vs atorvastatin on

all glycemic parameters.

−

Kato [51] 48 patients with T2DM, metabolic

syndrome and hyperlipidemia.

No alterations in HbA1c. Reductions in LDL-C and TG.

Liu [52] 225 Taiwanese high-risk HC patients Atorvastatin (n = 113) significantly increased

HbA1c vs pitavastatin (n = 112)

Pitavastatin 2mg/day is equivalent

to atorvastatin 10mg in lowering

LDL-C.

Shimabukuro [53] 31 T2DM HC and/or hyperTG patients. pitavastatin 2mg (n = 16) or atorvastatin 10mg

(n = 15). No significant differences in HbA1c (%),

6.60–6.80 pitavastatin vs 6.60–6.70 atorvastatin;

HbA1c (mmol/mol), 49–51 pitavastatin vs 49–50

atorvastatin; FPG (mmol/l), 6.83–8.18 pitavastatin

vs 6.78–6.66 atorvastatin.

Only pitavastatin increased

cholesterol of medium HDL subclass.

Serum TG and TG content in VLDL

and LDL decreased by atorvastatin.

Yanagi [54] 90 T2DM patients. No effect on glucose metabolism. Decrease in LDL-C and TG; increase

in HDL-C

Hiro [55] 252 patients with acute coronary

syndrome (with/without T2DM)

Pitavastatin or atorvastatin did not alter % HbA1c

(from 7.3 to 6.8 in T2DM and from 5.4 to 5.6 in

non T2DM).

−

Motomura [56] 65 Japanese T2DM patients. Increase in % HbA1c (from 6.8 to 7.1), no

changes in FPG.

Decrease in TC, LDL-C and TG;

increase in HDL-C

Yokote [57] 20,000 Japanese HC patients. Pitavastatin did not affect HbA1c. Pitavastatin significantly decreased

LDL-C and elevated HDL-C.

Koshiyama [58] 178 Japanese HC patients, including

103 with T2DM.

Pitavastatin did not change HbA1c levels of

diabetic patients.

Decreases in LDL-C and TG;

increases in HDL-C.

Sasaki [59] 173 patients with LDL-C >140mg/dL
and glucose intolerance.

Pitavastatin 2mg/day or atorvastatin 10mg/day

did not significantly affect glucose metabolism.

Greater % change in HDL-C, apoAI,

LDL-C, apoB, apoE and non-HDL-C

with pitavastatin

Kurogi [60] 129 patients with coronary artery

disease, HDL-C <50mg/dl and HC.
Pitavastatin 2–4mg/day or

atorvastatin 10–20mg/day had no significant

effect on HbA1c.

Beneficial effects of pitavastatin

on HDL-C, apoAI and adiponectin

greater than those of atorvastatin.

Han [61] 189 HC patients with high transaminases

(ALT).

Pitavastatin and atorvastatin did not change

plasma glucose.

Both decreased LDL-C and ALT.

continued on next page
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Table 1

(continued )
First author [ref.] Population Effect on glucose/insulin Effect on lipids or other parameters

Saku [62] 295 patients with coronary artery

disease and elevated LDL-C.

Atorvastatin and rosuvastatin, but not pitavastatin,

increased HbA1c.

The three statins equally reduced

LDL-C and LDL particles.

Chapman [63] 26 T2DM patients. No significant differences in HbA1c, insulin,

HOMA-IR after pitavastatin (n = 12); small (4%)

increase in FPG at day 180.

Similar results after pravastatin (n = 14).

Reduction in atherogenic

lipoproteins.

Teramoto [33] 308 Japanese T2DM patients. In the time-course analysis, HbA1c gradually

decreased by 0.28% over the 104 weeks.

Decrease in LDL-C and TG; increase

in HDL-C.

Kakuda [64] 10 Japanese healthy men. After 4 weeks, pitavastatin 2mg/day decreased

insulinemia. After a test meal, glucose and insulin

did not change

General improvement of lipid and

oxidative parameters.

Mita [65] 28 T2DM, HC patients. Pitavastatin had a more favorable effect on

glycemic control (HbA1c, fasting glucose,

HOMA-IR) than atorvastatin.

Effects were significantly different

despite same LDL-C control

Daido [66] 86 Japanese T2DM and HC patients. Pitavastatin 2mg/day for 12 months did not alter

glucose metabolism. FBG decreased in those with

BMI >25 kg/m2

No changes in lipid-related values

and no side effects.

BMI, body mass index; CAD, coronary artery disease; CHD, coronary heart disease; CRP, C-reactive protein; CV, cardiovascular; EPA, eicosapentaenoic

acid; FBG, fasting blood glucose; FCHL, familial combined hyperlipidemia; FMD, flow-mediated dilation; FPG, fasting plasma glucose; GGT, gamma

glutamyl-transferase; HC, hypercholesterolemic; HDL-C, high-density-lipoprotein cholesterol; HMW, high-molecular-weight; HOMA-IR, homeostatic model

assessment of insulin resistance; HTG, high triglyceridemia; HbA1c, glycated hemoglobin; IGT, impaired glucose tolerance; IMT, intima-media thickness;

IVUS, intravascular ultrasound; LDL-C, low-density-lipoprotein cholesterol; LMW, low-molecular-weight; MCP-1, monocyte chemotactic protein 1;

MDA, malondialdehyde; MMF, mycophenolate mofetil; PCI, percutaneous coronary intervention; QUICKI, quantitative insulin sensitivity check index;

RANTES, regulated on activation, normal T cell expressed and secreted; RAS, renin–angiotensin system; RBP-4, retinol binding protein-4; T2DM, type 2

diabetes mellitus; TC, total cholesterol; TG, triglycerides; VHD, valvular heart disease.

Fig. 2 Structures, lipophilicity and affinity for HMG-CoA reductase (in rat microsomes) of the most common statins. * LogD. FromArnaboldi and Corsini [72],

Curr Opin Lipidol, 2010.

The specific interactions with the binding-site residues are

significantly different [69]: the polar interaction mediated

by the characteristic fluorophenyl group of the synthetics

fluvastatin, atorvastatin, rosuvastatin and pitavastatin is

lacking in the first-generation drugs lovastatin, simvastatin

and pravastatin [70]. While additional hydrogen bonding

characterizes atorvastatin and rosuvastatin, the peculiar

cyclopropyl group confers pitavastatin avid binding and

potent inhibition of HMG-CoA reductase [71] (Fig. 2).

Nevertheless, statins’ ability to inhibit HMG-CoA reductase
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is only partially dependent on their physicochemical prop-

erties, since they are taken up by hepatocytes via active

transporter system [72,73].

Moreover, statins present important pharmacokinetic

differences (half-life, systemic exposure, bioavailability,

protein binding, lipophilicity, metabolism, active metabo-

lites, excretion) that contribute to their pharmacodynamic

profile [68,69,72,73]. They are generally rapidly absorbed

and exhibit low systemic bioavailability (5% for sim-

vastatin, lovastatin and fluvastatin, 20% for pravastatin

and rosuvastatin), except for pitavastatin (at least 51%).

While all statins but pitavastatin are biotransformed by

liver (thus explaining their low systemic bioavailability),

intestine and liver transport proteins are also responsible for

their different systemic disposition [68,69,72,73]. Lipophilic

statins are extensively metabolized by cytochrome P450

(CYP) enzymes, whereas pravastatin, rosuvastatin and

pitavastatin are mainly excreted unchanged [73].

Pitavastatin, thanks to its cyclopropyl group, is only

slightly metabolized by CYP2C9 and CYP2C8 and is mainly

excreted via biliary secretion and subjected to entero-hepatic

circulation [74]. UDP-glucuronosyltransferase (UGT)-medi-

ated lactonization of the open acid form of statins is

a common pathway leading to rapid metabolism by

cytochromes [73]. Atorvastatin, simvastatin, cerivastatin,

rosuvastatin but not pitavastatin lactone forms undergo a

30–71- fold higher CYP3A4-mediated metabolic clearance

than the open forms [75]. Indeed, in humans, the major

plasma components after 2mg-pitavastatin for 5 days are

the parent compound and the lactone [74]. Altogether, the

different pharmacokinetic profile of pitavastatin may lead to

potentially higher systemic exposure, allowing a significant

penetration into peripheral cells, thus potentially exerting

extrahepatic effects, such as on adipose tissue and on

adiponectin.

4.2. Pitavastatin and adiponectin: its strength in clinical
studies compared to the other statins

4.2.1. Adiponectin: role and characteristics

Adiponectin is an antidiabetic, antiatherogenic and anti-

inflammatory adipokine [76–80]. It is synthesized in

adipocytes as a 32-kDa monomer, then assembled into low-

molecular-weight trimers (~90 kDa), medium-molecular-

weight hexamers (~180 kDa) and high-molecular-weight

(HMW) multimers (12–18 monomers, >300 kDa) [81].
Circulating adiponectin is mainly oligomeric, with physio-

logical concentrations between 5 and 10mg/mL (higher in
women since testosterone inhibits its secretion) [82–85] and

rapid plasma turnover [86].

HMW adiponectin (HMWA)’s formation and secretion

are post-translationally controlled by hydroxylation [84],

glycosylation and disulfide bond formation [87,88] and in-

terconversions between oligomers do not occur after release

from the adipocyte [89]. In particular, while hydroxylation

and glycosylation are required for intracellular assembly

of adiponectin trimers into HMW multimers [90,91], the

formation of disulfide bonds between trimers or other

proteins is essential for its secretion. Adiponectin succination

is elevated in diabetes, suggesting that this modification may

impair its secretion in obesity-related disorders.

Adiponectin exerts its effects through AdipoR1 and

AdipoR2 receptors [80,92]. AdipoR1 is ubiquitous while

AdipoR2 is mostly expressed in the liver [92]. Dis-

ruption of AdipoR1 blocks AMP-activated protein ki-

nase (AMPK) activation, while disruption of AdipoR2

abolishes PPARa signalling [92]. Simultaneous disruption
provokes marked glucose intolerance. The cell-surface

glycoprotein T-cadherin also specifically binds HMWA [93],

mediating a significant adiponectin-dependent cardioprotec-

tive effect [94].

The fact that HMWA is the most potent form [95,96]

in ameliorating insulin resistance, that particularly its drops

occur in parallel with deterioration of insulin sensitivity and

before the appearance of diabetes [97], probably due to

multimerization defects, render plasmaHMWAandHMWA/

total adiponectin better predictors of insulin resistance,

metabolic syndrome and T2DM in humans [98–102].

Full-length adiponectin stimulates both skeletal and

hepatic AMPK phosphorylation, while globular adiponectin

is only active on skeletal muscle. In fact, AMPK activation

is blunted in obesity and is primarily dependent on

liver AdipoR1 [103,104].

While its supplementation or overexpression in trans-

genic mice improves insulin resistance, decreases hyper-

triglyceridemia and adipocyte mass, adiponectin-deficient

mice are insulin resistant, glucose intolerant, dyslipi-

demic and hypertensive [105–107]. Epidemiological stud-

ies demonstrate a negative correlation between body fat

and plasma adiponectin [108,109]. Obesity also decreases

the expression of adiponectin receptors (AdipoR1 and

AdipoR2) in muscle, liver and macrophages, contributing

to T2DM and atherosclerosis. Significant reductions in

adiponectin mRNA and concentrations in in-vitro , rodent
models of T2DM, prospective and longitudinal trials [110–

113] are associated with a higher incidence of diabetes,

dyslipidemia, insulin resistance [114] and cardiovascular

disease [77,112,115,116]. A recent meta-analysis [117]

including 13 prospective studies with 14,598 participants

and 2,623 incident cases of T2DM showed that higher

plasma adiponectin is dose-dependently associated with

lower T2DM risk, across diverse populations [118–121].

Finally, increases in serum adiponectin parallel weight loss,

decreased plasma glucose, free fatty acids and triglyc-

erides (TG), markedly enhancing insulin-induced suppres-

sion of glucose production, without stimulating insulin

secretion [79].

In Boxes 1–7 we summarize adiponectin’s properties,

which are exerted on different targets and which may explain

its effects on diabetes, inflammation and atherosclerosis.
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Box 1. Adiponectin regulation

– Adiponectin gene transcription: upregulated by PPARa, PPARg, SREBP-1c, C/EBP-a and FoxO1; downregulated by CREB [84].
– PPARg:
a. induces adipogenic gene expression during development, thus regulating lipid storage, releasing adiponectin, decreasing proinflammatory

cytokines, improving liver and skeletal muscle insulin sensitivity;

b. increases adiponectin multimerization by repriming ERp44 transcription;

c. increases the expression of liver and skeletal muscle AdipoR1 and AdipoR2 [80,84,122].

– PPARa expressed in liver, skeletal muscle and adipose tissue, modulates fatty acid oxidation and adiponectin expression (interaction with
SREBP-1c) [123].

– In response to cholesterol depletion, SREBP translocates to the nucleus, interacting also with the human adiponectin gene, promoting its

transcription [124–126].

– FoxO1 is involved in adipocyte differentiation [127] and its nuclear translocation is promoted by SIRT1 [128,129].

– CREB increases hyperglycemia and insulin resistance, mainly by lowering adiponectin [79].

– TNF-a reduces mRNA expression of human adiponectin: IL-6 also mediates inflammation and CVD, by inducing hepatic CRP and liver [79].

Box 2. Adiponectin and liver

Adiponectin suppresses glucose production and output, lowering systemic glucose by:

a. enhancing hepatocyte insulin sensitivity [130,131]

b. inhibiting expression and activity of gluconeogenesis key enzymes [130,132,133]

Adiponectin’s effects on hepatic insulin sensitivity are achieved by:

– ROS- or STAT-3-dependent activation of the insulin receptor,

– downstream mediators (e.g. AKT, LKB1)

– sphingolipid pathway [134,135].

Adiponectin improves liver fatty acid metabolism by:

a. decreasing circulating TG and FFA,

b. preventing hepatic steatosis in different experimental models and in humans [135–137].

– While AdipoR1/R2 KOmice show fatty liver, overexpression of hepatic AdipoR1/R2 significantly increases hepatic ceramidase activity, therefore

lowering ceramide (independently of AMPK) and improving insulin resistance [92,138].

– AdipoR1 activation increases AMPK [92,138].

– AdipoR2 stimulates PPARa and thus fatty-acid oxidation and energy dissipation [75,92,138].

Box 3. Adiponectin, adipose tissue, macrophages and inflammation

– Adipocytes possess immune and phagocytic properties depending on their differentiation state [78,84].

– Obesity-associated fat-mass enlargement causes adipose-tissue hypoxia [139], impaired mitochondrial function, ER stress [134] and macrophage

infiltration into adipocytes, resulting in a low-grade chronic inflammation, with reduced adiponectin secretion and increased TNF-a, IL-1b, IL-6,
IL-8, IL-18, TGF-b and PAI-1, as shown in rodents and obese patients [129].

– These effects are mediated by NFAT [140,141] and CREB, that during fasting stimulates liver gluconeogenic genes, enhances adipose tissue lipolysis

and whose activity correlates with insulin resistance in obesity [140–145].

– Adiponectin influences adipose tissue function through AdipoR1 and AdipoR2 [146].

– Adiponectin shifts human monocyte differentiation towards macrophages with anti-inflammatory profile and prevents pro-inflammatory cytokine

release, through AdipoR1 and IL-10, AdipoR2, IL-4/STAT6-dependent signaling pathway [147–151].

– Adiponectin inhibits foam-cell formation, human macrophage phagocytosis, class-A scavenger receptor expression, ACAT activity [152–156].

– In contrast, acute treatment with adiponectin releases TNF-a and IL-6, thus inducing the anti-inflammatory cytokine IL-10 [157].
– The increased expression of IL-10 and TIMP-1 in macrophages suppresses matrix metalloproteinases, enhancing plaque stability [158].

– Adiponectin-overexpressing ob/ob mice display greater subcutaneous fat (larger number of smaller adipocytes), PPARg upregulation and
improvement of adipose tissue lipid metabolism. Genes involved in fat oxidation and anti-inflammatory cytokines (IL-10) are upregulated, while

inflammatory genes are suppressed [135,136,151,159,160].

– The higher TNF-a, MCP-1 and IL-6 production in adiponectin-KO mice macrophages is reduced by exogenous adiponectin [131,151,153,161].
– Adiponectin expression in adipose tissue mRNA downregulates lipogenic enzymes (FAS, ACC1, DGAT) and upregulates lipolysis [78,162].

– Ectopic adiponectin production by macrophages in transgenic mice improves systemic insulin sensitivity after high-fat diet feeding [163].

– By suppressing inflammation-induced NF-úB activation, via PPAR and AMPK and increasing IL-6 in macrophages, adiponectin activates STAT3 in
hepatocytes, thereby increasing insulin sensitivity [164–166].

4.2.2. Comparison of pitavastatin with other statins

In-vitro and in-vivo studies document that statins generally
reduce circulating HMWA with a concomitant increase in

its intracellular concentrations, probably due to a selective

secretion defect for HMWA in adipocytes [224]. Among

different hypotheses, disruption of adipocyte caveolar struc-

ture, decreased adipocyte maturation/differentiation and

inhibition of GLUT4 expression may represent potential

mechanism(s) for statin-induced impairment of adiponectin

secretion and thus of statin-induced NOD. Unfortunately,

these changes do not properly translate into clinical studies,
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Box 4. Adiponectin and muscle

– Probably the effects are of minor importance since globular adiponectin, the form recognized bymyocyte AdipoR1, represents a very small proportion

of circulating adipokine [131,167–169].

– The AdipoR1 activation upregulates AMPK, SIRT1 and PGC-1a, through AMPK phosphorylation, under sphingolipid regulation [134].

– Muscle-specific AdipoR1 disruption inhibits oxidative stress-detoxifying enzymes associated with insulin resistance, causing mitochondrial

dysfunction [170].

Adiponectin causes:

Increases in:

– glucose uptake (via GLUT4 translocation),

– insulin receptor tyrosine kinase activity, p38 MAPK, non-oxidative glycolysis,

– fatty acid oxidation through PPARa activation [123].
Reductions in:

– myocellular TG [123].

In obesity models, adiponectin’s effects on skeletal muscle are significantly decreased. Cultured myotubes from obese patients demonstrate impaired

adiponectin-stimulated AMPK phosphorylation and fatty-acid oxidation (cellular defect in the intracellular signaling that prevents an adaptive up-

regulation in the expression of AdipoR1 mRNA) [171].

Enhanced levels of NF-úB-inducing kinase (NIK), a member of theMAPK family that plays a critical role in the non-canonical NF-úB pathway, induces
skeletal muscle insulin resistance in vitro . Adiponectin exerts its insulin-sensitizing effect by suppressing NIK-induced skeletal muscle inflammation
in cultured L6 myotubes. In fact, NIK decreased in parallel with increased plasma adiponectin, enhanced skeletal muscle AMPK phosphorylation, and

improved insulin sensitivity after weight loss in obese patients with the metabolic syndrome [172].

Box 5. Adiponectin and beta cells

– Effects on b-cell function are still rather speculative, with variable and inconsistent results.
– Globular adiponectin, binding to b-cells AdipoR1 [173–176], completely restores cytokine- and fatty-acid-induced impairments in glucose-stimulated
insulin secretion, indicating a protective effect in b-cell dysfunction from IL-1b/interferon-g, lipotoxicity and glucotoxicity [173–177].

– Adiponectin increases insulin secretion from isolated mouse islets by stimulating exocytosis of insulin granules, without affecting K+/ATP channels,

Ca2+ influx, or activation of AMPK [178].

– In insulin-resistant mouse islets (but not in normal ones), adiponectin inhibits insulin secretion at low glucose concentrations and vice versa at high

concentrations [179].

– Adiponectin’s antiapoptotic effects are mediated by ERK1/2, PI3K-Akt activation, but mostly by ceramidase-induced sphingosine-1-phosphate

production [180–183].

– Adiponectin inhibits acetyl-CoA carboxylase activity in b-cells and glucose-stimulated lipogenesis in MIN6 cells [178,184].

Animal models:

– Adiponectin KO mice have impaired glucose tolerance but normal insulin concentrations [105].

– Globular domain adiponectin transgenic ob/obmice exhibit increased insulin sensitivity and increased insulin secretion comparedwith non-transgenic

mice [185].

– In C57BL/6 mice i.v. adiponectin increases insulin secretion [178].

Human studies:

– Significant associations between adiponectin and insulin levels, insulin resistance, and b-cell function are abolished after adjustment for
body weight [186].

– Adiponectin correlates positively with insulin sensitivity and inversely with fasting proinsulin concentration and the proinsulin-to-insulin ratio, a

marker of b-cell failure [187].
– Circulating adiponectin is correlated positively with insulin sensitivity and inversely related to b-cell dysfunction in obese subjects [188].

in which adiponectin variations and whole-body insulin sen-

sitivity are different form statin to statin [78,225,226].

We therefore collected all the clinical studies available

on PubMed up to the end of November 2014 in which

the effect of simvastatin (n = 21), pravastatin (n = 14),

fluvastatin (n = 1), atorvastatin (n = 36), rosuvastatin (n = 3)

or pitavastatin (n = 11), alone or in head-to-head comparison,

on plasma total adiponectin was measured.We could not find

any published trial documenting the effect of lovastatin on

adiponectin. Tables 2–6 thoroughly summarize these trials,

highlighting:

– type of population,

– number of patients enrolled,

– statin dose, alone or coadministered with other drugs, and

duration of treatment,

– basal concentrations of plasma adiponectin (where avail-

able) and % changes vs baseline,

– other outcomes (lipid and glucose profiles, markers of

atherosclerosis and diabetes).

We depict in Fig. 3 the effect of treatment with different

statins on the percent change in total plasma adiponectin.

Pitavastatin clearly emerges as the best statin on this param-

eter, increasing adiponectin concentrations by 27.2±15.9%.

Rosuvastatin and pravastatin are less effective, enhancing

adiponectin by 17.3±37.2% and 14.7%±32.5%, respectively.

On the other hand, atorvastatin and fluvastatin (data not

shown, since only one study is available) are uneffective

(+7.2±20.5% and 0%, respectively), while simvastatin even

decreases adiponectin concentrations (−1.6±17.5%). The

elevated SD in the results obtained with simvastatin (in
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Box 6. Adiponectin and HDL

– Plasma and HMW adiponectin directly correlates with HDL-C in healthy subjects and diabetics, while it inversely correlates with apoA1 catabolism,

independently of obesity and insulin resistance.

– In-vitro and in-vivo studies suggest causality and bidirectionality in adiponectin–HDL relationship [189–195].
– Direct role for adiponectin in HDL catabolism [196].

– In a prospective trial conducted in obese women, physical activity plus mediterranean diet reduced body weight, increased adiponectin and HDL,

and decreased insulin resistance, serum FFA, IL-6 and IL-18 [162].

– Plasma adiponectin is lowered in CHD patients [116,159,162,197].

– HDL-C represents an important connection between adiponectin and CHD risk. Increased ceramidase activity, adipose tissue IL-6, CRP, PAI-1 and

TNF-a mediate this effect [134].
– Adiponectin increases HDL-C via

a. enhancing ApoA-I and ABCA1 production (through PPARg), thus inducing RCT in rodents but also in humans [198–203].
b. increasing mitochondrial fatty-acid oxidation, reducing circulating FFA, thus reactivating LPL and downregulating HL or activating PPARa, that
upregulates liver apoAI/AII expression, increasing reverse cholesterol transport [204].

– HDL mobilize adipocyte unesterified cholesterol, while apoA-I overexpression reduces adipose tissue mass of high-fat fed mice [205], by enhanced

energy expenditure and stimulation of AMPK.

– Adiponectin may mediate the insulin-sensitizing effects of HDL by activation of AMPK in skeletal muscle [206].

Box 7. Sirtuin, type 2 diabetes mellitus and adiponectin

Sirtuin-1 (SIRT1), a class-III histone deacetylase, delays aging and age-related diseases of glucose-lipid metabolism [207] through:

– regulation of insulin secretion [208],

– protection of pancreatic b-cells [209],
– improvement of insulin resistance via modulation of post-insulin receptor signaling [210],

– decrease of inflammation, lipid mobilization and regulation of hepatic glucose production via FoxO1 and PPARg [210].
– Enhancement of fasting-induced mitochondrial fatty acid oxidation by activating liver PPARa and PGC-1a, inhibiting SREBP-1C activity and
increasing LXR [211–213].

– Protection against oxidative-stress-induced insulin resistance, by restoring mitochondrial oxidative capacity, increasing antioxidant enzymes and

FOXO3a [214,215].

– Induction of hepatic gluconeogenesis (by PGC-1a and FOXO1) in late fasting conditions [216].
• Sirt1 transgenic mice present increased lipolysis and adiponectin levels, reduced blood cholesterol, insulin, fasting glucose and good glucose
tolerance [217–220].

• SIRT1-KO mice exhibit reduced body weight, smaller-sized adipocytes, reduced adiponectin, leptin and adipocyte differentiation [221].
• Decreased SIRT1 expression is present in insulin resistance and glucose intolerance, due to physical interaction with the NF-úB
p65 subunit [222,223].

10 of 23 studies the drug decreased adiponectin, in 11

it did not cause a significant change and only in 2 it increased

adiponectin), atorvastatin (12 decreases, 15 no change and

15 increases) but mostly with rosuvastatin (2 decreases,

5 no change and 4 increases) and pravastatin (4 decreases,

1 no change, 9 increases) reflect the discrepancies in results

and the different magnitudes of the effect. Interestingly, pita-

vastatin is the only statin that consistently and significantly

increases adiponectin (9/10 positive and 1/10 ineffective

trial), without negative outcomes on this parameter, both

when used alone and in head-to-head trials with other

statins. These results may suggest a link between pitavastatin

and the findings on its neutral–beneficial effect on glucose

metabolism.

In order to understand whether specific populations can

benefit more from a statin-induced plasma adiponectin

increase, we divided the results of the trials into three

tertiles, performing a kind of “basal adiponectin-based

selection”. As suggested from literature, subjects with values

lower than 5mg/mL are considered hypoadiponectinemic,
while those with values between 5 and 10mg/mL are

normoadiponectinemic [227]. Values higher than 10 rep-

resent hyperadiponectinemic subjects. The results of this

analysis are depicted in Fig. 4. Except rosuvastatin,

though with different efficacy, all the other statins seem

to be most effective in increasing adiponectin in hypo-

adiponectinemic patients, with pitavastatin being the most

promising.

5. Conclusions

In-vitro , in-vivo , but mainly clinical studies demonstrate that
pitavastatin, unlike most of the available statins, does not

worsen or even ameliorates glucose metabolism markers,

but the mechanism is still unknown. Keeping in mind the

possibility that statins’ diabetogenicity could be due, at least

in part, to an on-target reduction of HMG-CoA reductase

activity [17], beyond pharmacokinetic differences (striking

higher oral bioavailability, lower hepatic extraction and

higher systemic exposure compared with the other statins),

constant and significant increases of plasma total adiponectin

characterize pitavastatin’s effect. Adiponectin is an anti-

inflammatory, antiatherosclerotic and antidiabetic protein,

whose concentrations are reduced in T2DM, hyperlipidemia

and metabolic syndrome. Since its positive effects are

exerted on adipose tissue, liver, HDL metabolism and

pancreatic beta cells, the peculiar property of pitavastatin
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Table 2

Effect of atorvastatin on adiponectin in clinical studies

First author [ref.] Patients Drug, duration and dose Effect on adiponectin Other effects

Son [228] 440 T2DM patients. 8-week, titration trial of tailored
atorvastatin (10, 20, 40mg/day),
according to baseline LDL-C.

Adiponectin increased: from 6.58 to 7.22
(+9.7%), from 7.53 to 8.2 (+8.9%),
from 7 to 7.42 (+6%) for 10, 20 and 40mg
atorvastatin respectively.

Tailored atorvastatin ameliorated
LDL size, inflammation and achieved the
target LDL-C without affecting glycemic
control.

Al-Azzam [229] 394 T2DM patients. 161 patients treated with
20mg/day atorvastatin vs
233 controls.

Atorvastatin treatment is not associated with
changes in adiponectin (basal 2.1mg/mL).

No changes in leptin, leptin/adiponectin
or HOMA-IR. Significant positive
correlation HDL-C/adiponectin in both
groups.

Tanaka [230] 29 T2DM patients
(16 males).

Single pill of amlodipine 5mg/
atorvastatin 10mg for
6–12 months

Adiponectin increased (6.7%) only after
12 months (from 7.64 to 8.15mg/mL).

LDL-C, TG, mean IMT, urinary
albumin/creatinine ratio and creatinine
significantly decreased at 6 and
12 months. eGFR increased.

Buldak [231] 67 patients with impaired
fasting glucose and mixed
dyslipidemia.

Atorvastatin, fenofibrate, their
combination, or therapeutic
lifestyle change for 90 days.

Drug therapies increased adiponectin and
decreased leptin and resistin.

Significant alterations in the lipid profile.
Fenofibrate reduced HOMA-IR. Additive
effect on plasma IL-6 by the combination.

Hyogo [232] 42 NASH patients with
dyslipidemia.

atorvastatin (10mg/day) for
12 months.

Atorvastatin increased adiponectin by 16.4%
(from 5.5 to 6.4mg/mL).

Atorvastatin increased HDL-C, improved
NASH, significantly decreased liver
transaminase, g-GGT, LDL-C, TG and
TNF-a.

Szotowska [233] 36 patients with
metabolic syndrome and
LDL-C >3.5mmol/l,
previously untreated with
statins.

2, 4 and 6 months of atorvastatin
therapy (10mg).

Plasma adiponectin significantly decreased
by 20.7% after 2 months vs baseline
(8.54mg/mL); the decrease lost significance
at 4 and 6 months vs baseline.

−35.6% LDL-C.

Li [234] 25 patients with CAD, HC
hypertension.

Combination amlodipine–
atorvastatin in 8 dosages for
14 weeks.

The combination increases adiponectin
(49.4%; 12.1 vs 8.1mg/mL); the increase
correlated with FMD and changes in
diastolic blood pressure.

Reduced systolic and diastolic blood
pressure, TC and LDL-C.

El-Barbary [235] 30 patients with early
rheumatoid arthritis plus 10
healthy controls.

(A) 15 treated for 6 months with
methotrexate 0.2mg/kg/week
plus prednisone 10mg /day.
(B) 15 additionally received
atorvastatin 40mg/day.

Adiponectin significantly improved by
the treatments: Group A from 19.81
to 21.61 (9%) and Group B from 19.21 to
23.36mg/mL (21.6%), respectively.

Atorvastatin/metotrexate significantly
reduced TC, LDL-C and TG, and
increased HDL-C. TNF-a, FMD and
resistin significantly improved.

Carnevale [236] 36 patients with
polygenic HC plus
18 healthy controls.

Low-fat diet (Group A)
or low-fat diet plus
atorvastatin 10mg/day
(Group B) for 30 days

Adiponectin significantly increased in
group B (83.6%; from 5.5 to 10.1mg/mL),
which inversely correlated to reduced levels
of urinary isoprostanes, platelet oxygen free
radicals.

Patients presented lower serum
adiponectin, worse lipid profile, urinary
isoprostanes, platelet oxygen free
radicals.

Koh [237] 213 HC patients. 44 patients treated with placebo;
42, 44, 43 and 40 patients
treated with atorvastatin 10, 20,
40, 80mg/day, respectively, for
2 months

Atorvastatin 10, 20, 40 and 80mg decreased
plasma adiponectin (−4%, −10%, −3%,
and −9%, respectively) after 2 months.
Compared vs placebo these effects were not
significant.

Atorvastatin significantly reduced LDL-C
and apo B vs baseline or placebo,
increased fasting plasma insulin and
HbA1c, and decreased insulin sensitivity.

Satoh [238] 25 patients without CAD
and 70 patients with
stable CAD not previously
treated with RAS blockers
or statins.

Patients without CAD received
no treatment.
CAD patients received either
telmisartan 40mg/day or
enalapril 5mg/day (1:1 ratio)
for 6 months and both groups
received atorvastatin 10mg/day.

Telmisartan significantly increased HMW-
and HMW/total adiponectin ratio; After
telmisartan or enalapril, HMWA was
0.7mg/mL in CAD vs 3.2 in controls;
HMW/total adiponectin was 0.25 in CAD vs
0.43 in controls.

Telmisartan and enalapril decreased
hs-CRP. HOMA-IR significantly
decreased vs baseline. Basal HMW- and
HMW/total adiponectin were lower in
CAD vs controls (2.0 vs 9.2mg/mL and
0.37 vs 0.53). Baseline HMW adiponectin
negatively correlated with hs-CRP and
HOMA-IR in CAD.

Nakamura [239] 47 HC patients with stable
CAD.

Atorvastatin 10mg/day (n = 16),
bezafibrate 400mg/day (n = 15)
or placebo (n = 15) for 1 and
6 months

Atorvastatin increased adiponectin from
2.05 to 2.72 (+32%) and 3.24 (+58%) mg/mL
at 1 and 6 months vs baseline respectively.
Similar increases with bezafibrate.

Significant correlation between
adiponectin and FMD; inverse correlation
between adiponectin, HOMA-IR,
TNF-a CRP and TG. Atorvastatin and
bezafibrate similarly increased FMD and
decreased HOMA-IR, CRP and TNF-a.

Koh [225] 42 patients with
hypertension.

(a) Atorvastatin 20mg/day and
placebo;
(b) atorvastatin 20mg/day and
amlodipine 10mg/day;
(c) amlodipine 10mg/day and
placebo for 2 months followed
by a 2-month washout period.

Atorvastatin significantly decreased [from
3.3 to 3mg/mL (−10%)] and amlodipine
increased [from 3.2 to 3.6mg/mL (+12.5%)]
plasma adiponectin.
Their combination significantly
increased adiponectin [from
3.2 to 3.9mg/mL (+21.9%)] and insulin
sensitivity relative to baseline.

Amlodipine alone or in combination
significantly reduced blood pressure.
Atorvastatin/amlodipine improved FMD
significantly more than the single drugs.
Atorvastatin increased, while amlodipine
decreased insulin levels.

Arca [240] 48 FCHL patients. Atorvastatin 10mg/day (n = 22)
or fenofibrate (n = 26) for
24 weeks

Adiponectin was increased by 12.5% (from
8.19 to 9.36mg/mL) by atorvastatin and
reduced by 10% by fenofibrate.

FCHL patients and normolipidemic
relatives had lower serum adiponectin vs
controls.

van Hoek [241] 194 patients with T2DM and
mildly elevated TG.

6 months of placebo,
10 or 80mg/day atorvastatin.

Atorvastatin had no effect on plasma
adiponectin. Patients with the highest basal
adiponectin displayed the largest increase in
HDL-C.

At baseline, plasma adiponectin levels
were associated positively with HDL-C
and negatively with TG.

continued on next page
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Table 2

(continued )

First author [ref.] Patients Drug, duration and dose Effect on adiponectin Other effects

Hyogo [242] 31 patients with biopsy-
proven NASH with
hyperlipidemia.

atorvastatin 10mg/day for
24 months.

Adiponectin levels significantly increased
(24.5%) from 5.3 to 6.6mg/mL.

TNF-a and long-chain fatty acids
significantly decreased, while leptin did
not change.
Liver steatosis significantly improved,
but 4 patients had fibrosis.

Forst [243] 148 patients with increased
CV risk factors (76 male,
72 female; age 61.4±6.5
years; BMI 29.2±4.1 kg/m2).

atorvastatin 20–40mg/day
monotherapy or combined with
pioglitazone for 6 months.

No effect of atorvastatin (from 14.8 to
14.3mg/mL).
Addition of pioglitazone to atorvastatin
significantly increased adiponectin from
15.7 to 32.0mg/mL (103.8%).

Atorvastatin alone and in combination
with pioglitazone caused a significant
regression in IMT. Addition of
pioglitazone significantly ameliorated
t-PA, TG, hs-CRP, P-selectin and HDL-C.

Teplan [244] 68 obese renal transplanted
patients (BMI >30 kg/m2)
with dyslipidemia.

Tailored diet up to one year
after transplantation, followed
by corticosteroid withdrawal
and atorvastatin 10–20mg/day,
plus cyclosporin A or
MMF/tacrolimus.

Significant increase in adiponectin due to
corticosteroid withdrawal and switch to
statin, cyclosporin A or MMF/tacrolimus
and long-term diet.

Significant decrease in BMI, serum leptin
and lipid metabolism markers.

von Eynatten [245] 75 patients with T2DM
(23 females; 52 males).

Atorvastatin 40mg/day for
8 weeks vs placebo.

HMW adiponectin significantly increased
(42.3%, 1.68 vs. 2.39mg/mLl); MMW and
LMW adiponectin significantly decreased
(MMW: 20.8%, from 3.31 to 2.62mg/mL;
LMW: 23.2%, from 0.56 to 0.43mg/mL).
Total adiponectin was not significantly
altered (6.0 vs. 6.2mg/mL). HMW/total
adiponectin significantly increased by
25.0%.

−

Chan [246] 60 coronary artery disease
patients with stable angina
and normal lipid profiles
scheduled for PCI and
not on statins.

No treatment or atorvastatin
immediately after PCI for 3–6
months.

Significant decreases in adiponectin after
3 and 6 months of atorvastatin [from 8.66 to
6.87mg/mL (−21%) and 7.12mg/mL (−18%)
at 3 and 6 months, respectively], but not in
controls.

Significant positive association baseline
plasma adiponectin/HDL. Changes in
adiponectin not associated with those of
hs-CRP and of lipids.

Blanco-Colio [247] 102 statin-free Spanish
subjects with CHD,
CHD-equivalent or a
10-year CHD risk >20% vs
40 age- and gender-matched
blood donors.

Atorvastatin 10–80mg/day
based on LDL-C at screening.

In whole population, atorvastatin
dose-dependently increased adiponectin
levels (9.7%). The dose-dependent
increase ranged from 2.2% to 24.7% with
atorvastatin 10–80mg/day

Adiponectin levels were reduced in
patients at high CHD vs controls.
Adiponectin positively correlated with
HDL-C before and after atorvastatin.

Chu [248] 29 HC, T2DM patients
(15 males, 14 females).

Atorvastatin 10mg (n = 10),
20mg (n = 10) or 40mg (n = 9)
for 12 weeks

No difference in adiponectin levels. No differences in insulin, leptin, HOMA
and QUICKI before and after treatment.
TC, LDL-C and TG significantly
decreased.

Miyagishima [249] 22 patients with ischemic
heart disease and
LDL-C >100mg/dl.

Atorvastatin 10mg/day for
3 months

Adiponectin significantly increased (43.3%)
from 9.7 to 13.9mg/mL.

Atorvastatin significantly decreased
serum lipids, ox-LDL.

Otto [250] 13 patients with T2DM
and mixed hyper-
lipoproteinemia (5 males,
8 females, age 60.0±6.8
years, BMI 30.0±3.0 kg/m2).

Atorvastatin 10mg/day and
fenofibrate 200mg/day each for
6 weeks separated by a 6-week
washout.

No changes in adiponectin. No changes in ghrelin, resistin and insulin
levels

Chu [251] 32 HC patients. Atorvastatin 10mg/day for
3 months.

No significant changes in adiponectin levels. sCD40L, TC and LDL-C significantly
reduced.

Bayes [252] Kidney transplant recipients
with stable renal function
and dyslipidemia (41 males,
27 females; mean age
53 years).

Atorvastatin 10mg/day for
12 weeks

No changes in adiponectin levels.
Inverse correlation adiponectin/glucose,
insulin, HOMA-IR index and positive
correlation adiponectin/HDL-C.

Atorvastatin significantly ameliorated
lipid profile but did not modify glucose
homeostasis, TNF-a or CRP.

Koh [253] 56 patients with combined
hyperlipidemia.

Atorvastatin 10mg/day,
fenofibrate 200mg/day, or their
association, for 2 months.

Adiponectin increased with fenofibrate
alone or in combination (from 3.2 to 3.6
and 3.4 to 3.5mg/mL respectively), while
atorvastatin alone did not (from 3.5 to
3.4mg/mL).

The combination was significantly better
than the single drugs on lipoprotein
profile, FMD, hs-CRP and fibrinogen
levels.

Shetty [192] 77 subjects who had
diabetes or were at high risk
of developing diabetes.

Atorvastatin 20mg/day for
12 weeks.

Atorvastatin did not alter resistin
and adiponectin. Positive correlation
adiponectin/HDL and CRP; negative with
BMI, TG, CRP and PAI-1.

Atorvastatin decreased lipid and CRP
levels.

See Table 1 for abbreviations.

in increasing adiponectin may explain, at least in part, its

neutral or even beneficial effects on glucose metabolism and

on NOD incidence (Fig. 5).

Nevertheless, we cannot exclude that other mechanism(s)

may contribute to these properties [301–310]. Among these,

an effect on HDL metabolism (Box 8) may be involved,

since, as demonstrated in Table 7, pitavastatin constantly

increases their concentrations in several clinical studies.

Further studies are required to confirm the real beneficial

effect of pitavastatin administration on the risk of NOD.
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Table 3

Effect of simvastatin on adiponectin in clinical studies

First author
[ref.]

Patients Drug, duration and dose Effect on adiponectin Other effects

Krysiak [254] 42 adult patients with
untreated isolated HC vs
18 normolipidemic controls.

1 month of lifestyle
intervention alone (n = 19) or
plus 40mg/day simvastatin
(n = 23) vs 18 healthy subjects.

Simvastatin increased plasma adiponectin
[from 5.2 to 6.8mg/l (30.7%)] vs
untreated (from 5.7 to 5.5) and healthy
subjects (10.7 to 11.2).

Simvastatin reduced plasma free fatty acids,
leptin and TNF-a. No differences in plasma
adipokines between insulin-resistant and
insulin-sensitive subjects.

Lazich [255] 53 patients with metabolic
syndrome.

Simvastatin 40mg/day alone or
plus rosiglitazone 4mg/day for
6 months.

Adiponectin increased only when
simvastatin was associated with
rosiglitazone.

Simvastatin/rosiglitazone reduced CRP and
decreased blood glucose vs placebo.

Hu [256] 57 patients: 23 T2DM and
atherosclerotic, statin-treated;
20 T2DM atherosclerotic and
14 T2DM non-atherosclerotic
statin-untreated for the last
3 months.

Simvastatin 40mg/day for 12
weeks.

Adiponectin increased by 59.6% vs
baseline.

LDL-C decreased and HDL-C increased.
CRP, TNF-a and IL-6 decreased.

Kater [257] 50 prediabetic subjects
with normo- or mild-to-
moderate HC

Ezetimibe 10mg/day or
simvastatin 20mg/day for
12 weeks, after which the drugs
were combined for another
12 weeks.

No changes in HOMA and adiponectin. Single drugs significantly reduced
TC- and LDL-C, apoB and TG. Additional
reductions when combined (E-selectin,
ICAM-1). PAI-1 and urinary albumin
excretion were lowered by simvastatin.

Pfutzner [258] 125 nondiabetic patients at
high CV risk (78 females,
47 males, age 58.6 years;
BMI 30.8 kg/m2)

Pioglitazone 45mg,
simvastatin 40mg or
combination for 3 months.

Pioglitazone alone or combined
significantly improved HOMA-IR and
adiponectin. Simvastatin decreases
adiponectin.

Reductions of CRP with all the treatments.
No changes in plasma RBP4.

Koh [259] 89 HC and/or T2DM patients. 45 patients treated with
simvastatin 20–40mg/day vs
44 controls for 2 months.

Simvastatin 20 and 40mg/day
significantly decreased adiponectin [from
5.7 to 5.2mg/mL (−8.9%) and from 6.8 to
6.1mg/mL; (−10.3%), respectively] and
insulin sensitivity.

Simvastatin 20–40mg significantly
increased plasma leptin, while
simvastatin 40mg decreased plasma
resistin.

Hajer [260] 15 nonsmoking, male, obese
patients with metabolic
syndrome.

Simvastatin 80mg vs
simvastatin/ezetimibe
10mg/10mg for 6 weeks on
post-prandial HDL-C.

8 hours after fat loading adiponectin
decreased with both treatments
(−8.4% and −6.4%, respectively).

Stable HDL-C during continuous fasting
following an overnight fast. Fat load
induced an 11% drop in HDL-C, unaffected
by either therapy.

Koh [261] 156 HC patients. 32 patients received placebo;
30, 32, 31, 31 patients
received 10, 20, 40, 80mg/day
simvastatin for 2 months.

Simvastatin 10, 20, 40 and 80mg
significantly and equally decreased
adiponectin [6.4 to 5.9mg/mL (−8%),
6 to 5.3mg/mL (−10.7%),
6.2 to 5.7mg/mL (−8.1%) and
6.4 to 5.7mg/mLmg/mL (−10.3%),
respectively].

Simvastatin 10–80mg significantly reduced
insulin sensitivity, TC, LDL-C and apo B,
and improved FMD.

Gouni-
Berthold [262]

72 healthy males (mean age
32 years, BMI 25.7 kg/m2).

Each group of 24
subjects received either
ezetimibe 10mg/day,
simvastatin 40mg/day, or their
combination, for 14 days.

Neither ezetimibe nor simvastatin or their
combination had any effect on serum
leptin, adiponectin, HMWA or resistin.

Baseline leptin levels correlated
positively, while adiponectin and HMW
adiponectin correlated negatively with
BMI. Adiponectin and HMW adiponectin
correlated with HDL-C.

Pfutzner [263] 125 nondiabetic patients
at CV risk (78 females,
47 males, mean age 58.6 years;
BMI 30.8 kg/m2).

Pioglitazone 45mg,
simvastatin 40mg, or their
association, for 3 months.

Increase in adiponectin with pioglitazone
groups, but decrease with simvastatin
alone [from 15.5 to 11.6mg/mL (−25.1%)].

Improvement in the HOMA-IR score with
pioglitazone groups. No changes in visfatin.

Devaraj [264] 50 patients with metabolic
syndrome.

Simvastatin 40mg/day vs
placebo for 8 weeks.

Simvastatin did not affect circulating
adiponectin levels vs placebo.

Simvastatin did not affect insulin sensitivity.

Forst [265] 105 nondiabetic patients at
CV risk.

Pioglitazone 30–45mg/day
in comparison with, and
in combination with,
simvastatin 20–40mg.

Adiponectin increased with pioglitazone
alone or in combination [from 13.96 to
27.64mg/mL (+98%) and from 11.68 to
26.67mg/mL (+118.3%), respectively],
while it decreased with simvastatin [from
15.5 to 11.6mg/mL (−25.1%)].

Lipid profile improved with simvastatin.
The combination was superior to the single
drugs in improving overall CV risk profile.

Bulcão [266] 41 subjects with
BMI>25 kg/m2 and impaired
fasting glucose or impaired
glucose tolerance.

Simvastatin 20mg/day (n = 20)
or metformin 1.7 g/day (n = 21)
for 16 weeks.

No change in leptin or adiponectin by any
therapy.

Metformin significantly reduced mean BMI,
insulin resistance and waist circumference.
Simvastatin significantly reduced
LDL and TG. Both decreased CRP.

Koh [267] 50 T2DM patients. Simvastatin 20mg/day,
ramipril 10mg/day, or their
association for each 2-month
period.

Ramipril, alone or in combination, but
not simvastatin, significantly increased
plasma adiponectin and insulin sensitivity.

Ramipril alone or in combination
reduced blood pressure vs simvastatin.
Simvastatin alone or in combination
significantly improved lipid profile. All
regimens significantly improved FMD and
reduced MDA.

Koh [268] 47 hypertensive, HC patients Simvastatin 20mg/day,
losartan 100mg/day, or their
association, each for 2 months.

Losartan alone or in combination
significantly increased adiponectin and
insulin sensitivity.

Losartan alone or in combination
significantly reduced blood pressure
vs simvastatin. Simvastatin alone or
in combination significantly improved
lipid profile. The regimens significantly
improved FMD, and decreased MDA and
MCP-1.

See Table 1 for abbreviations.
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Table 4

Effect of fluvastatin, pravastatin and rosuvastatin on adiponectin in clinical studies

First author [ref.] Patients Drug, duration and dose Effect on adiponectin Other effects

Sonmez [269] 49 dyslipidemic patients
(27 males, 22 females;
mean age 47.2 years;
BMI 29.6 kg/m2) and
20 controls (6 males,
14 females; mean age
45.3 years; BMI 30 kg/m2).

Initial therapeutic
lifestyle changes for
6 weeks.
24 HC patients also received
fluvastatin 80mg/day for
12 weeks.

Therapeutic lifestyle changes
significantly improved plasma insulin
and increased plasma adiponectin [6.4 to
8.2mg/mL (28.1%)]. No effect of fluvastatin
on plasma insulin, adiponectin or HOMA
index.

Fluvastatin significantly decreased TC
and LDL-C.

Takagi [270] 152 blood samples from
WOSCOPS biobank.

78 pravastatin-treated vs
74 controls (1 year).

Pravastatin significantly increased
plasma adiponectin (controls −0.28;
pravastatin +1.47mg/mL vs baseline).

−

Ruscica [271] 30 moderately dyslipidemic
patients with metabolic
syndrome.

Pravastatin 10mg/day for
8 weeks.

Adiponectin decreased from 6.3 to
5.6mg/mL (−11.2%).

Decreases in TC and LDL-C.

Koh [272] 48 HC patients (23 with
metabolic syndrome).

Pravastatin 40mg,
valsartan 160mg/day, or
their association, each for
2 months.

All treatments increased plasma
adiponectin [pravastatin: from 2.97 to
3.38mg/mL (13.8%); association: from 2.81
to 3.73mg/mL (32.7%)].

FMD and CRP greatly improved with
combined therapy. All treatments
reduced fasting insulin and increased
insulin sensitivity.

Kim [273] 73 HC females with T2DM. Placebo vs pravastatin 20 or
40mg/day for 16 weeks.

No significant differences between baseline
and pravastatin 20–40mg/day on total
adiponectin (from 3.22 to 2.88 and from
3.19 to 3.3mg/mL, respectively), and
on total/HMW adiponectin, or insulin
sensitivity.

TC and LDL-C significantly reduced after
pravastatin 20 and 40mg vs placebo.

Fichtenbaum [274] 74 dyslipidemic patients
(37 per arm).

Pravastatin 40mg/day or
fenofibrate 200mg/day for
12 weeks.
60 patients who failed
mono-therapy received the
combination, weeks 12–48.

At week 48 adiponectin decreased with
pravastatin [from 4.5 to 4mg/mL (−11.1%)],
but not with fenofibrate.

No significant changes in CRP, PAI-1,
and P-selectin.
From baseline to week 12, Apo B
decreased for both arms and also after
48 weeks. Apo A1 increased.

Nezu [275] 94 Japanese dyslipidemic
patients without previous
CAD.

Pravastatin 10mg/day for
6 months.

Total adiponectin concentration significantly
increased [from 11.7 to 13.7mg/mL (17%)].

Concomitant thiazolidinedione
synergistically influenced the effect.

Kai [276] 26 mild HC and
hypertensive patients.

Pravastatin 10mg/day for 6
months, then 20mg/day.

Total- and HMW adiponectin significantly
increased moving to 20mg/day [from 10.9
to 12.6mg/mL (15.6%) and from 6.6 to
7.6mg/mL (15.2%), respectively].

Increasing pravastatin from 10 to
20mg/day decreased LDL-C.

Sugiyama [277] 40 CAD patients with IGT. Pravastatin (n = 20) or
no lipid-lowering drugs
(control, n = 20) for
6 months.

Pravastatin significantly elevated plasma
adiponectin from 5.2 to 6.1mg/mL (17.3%).

Pravastatin significantly decreased
TC, LDL-C and CRP, and improved
hyperglycemia and hyperinsulinemia.

Sakamoto [278] 115 HC patients (83 males,
32 females; mean age
68 years) with documented
CAD. Patients were divided
into quartiles Q1 to Q4
according to increased basal
serum adiponectin.

Pravastatin 10–20mg/day
for 6 months.

Serum adiponectin significantly increased
in 74 patients (64.3%) [from 7.2 baseline
to 7.8mg/mL (8.3%)]. The increase was
significantly higher in patients in Q1 (39.3%)
compared with those in Q3 (4.5%) and
Q4 (6.3%).

Pravastatin decreased TC, LDL-C and
CRP, and increased HDL-C. Adiponectin
increase significantly correlated with that
in HDL-C.

Gannagé-Yared [279] 40 healthy nondiabetic
subjects (22 males,
18 females; age
28–72 years).

Pravastatin 40mg/day vs
placebo for 12 weeks.

Pravastatin did not alter adiponectin and
leptin levels. Negative correlation of
adiponectin with BMI and positive with
HDL-C.

Pravastatin decreased TC, LDL-C and
TG, but did not affect glucose and insulin
levels.

Kim [280] 53 patients with mild to
moderate hypertension.

Rosuvastatin 20mg/day
(n = 27) vs controls (n = 26)
for 8 weeks (on top of
anti-hypertensive drugs).

Plasma adiponectin did not differ
significantly from controls.

Rosuvastatin improved TC, LDL-C and
TG, without changes in fasting glucose
levels and insulin resistance.

Doh [281] 70 patients undergoing
peritoneal dialysis.

Rosuvastatin 10mg/day
(n = 35) vs placebo (n = 35)
for 6 months.

Rosuvastatin did not improve adipokine
profiles.

Rosuvastatin significantly decreased
HOMA-IR and CRP vs baseline.

Tasci [282] 116 patients with isolated
dyslipidemia.

Therapeutic lifestyle change
for 12 weeks. In 54
patients, LDL-C
decreased <160mg/dL.
The remaining 62
non-responding patients
were treated with
rosuvastatin 10mg/day for
12 weeks.

Both LDL-C-lowering regimens increased
adiponectin.
In those not responding to therapeutic
lifestyle change, rosuvastatin increased
adiponectin from 5.5 to 11.57mg/mL
(110%).

No significant change in plasma apelin in
non-respondents to therapeutic lifestyle
changes.
LDL-C lowering increased plasma apelin.
Lifestyle changes, but not rosuvastatin
decreased serum leptin.
TNF-a and plasma CRP decreased with
rosuvastatin.

See Table 1 for abbreviations.
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Table 5

Effect of pitavastatin on adiponectin in clinical studies

First author [ref.] Patients Drug, duration and dose Effect on adiponectin Other effects

Arao [45] 16 patients with stable CAD
and mild dyslipidemia,
and 6 age-matched healthy
controls.

Pitavastatin 2mg/day for
6 months.

In CAD patients, pitavastatin increased plasma
adiponectin from 6.19 to 7.45mg/mL (20.4%)

Pitavastatin significantly improved lipid
profile.

Nomura [41] 191 hyperlipidemic
patients with T2DM vs
30 normolipidemic controls.

Pitavastatin 2mg/day
(n = 64), EPA 1,800mg/day
(n = 55), or their
combination (n = 72), for
6 months.

Pitavastatin, alone and in association, but
not EPA, significantly increased adiponectin
[from 3.29 to 4.16mg/mL (26.4%) and
from 3.24 to 4.02mg/mL (24.1%), respectively].

Basal adiponectin in patients was lower
than in controls.

Ohbayashi [283] 42 HC outpatients (21 males,
21 females; mean age
65.2 years).

Pitavastatin 2mg/day for
12 weeks.

Serum resistin, but not adiponectin and leptin,
significantly decreased.

Pitavastatin significantly decreased
LDL-C.

Inami [284] 117 patients with
hyperlipidemia.

Pitavastatin 2mg/day for
6 months.

Pitavastatin significantly increased adiponectin
in hyperlipidemic patients with or without
T2DM [from 3.52 to 4.52mg/mL (28.4%) and
from 3.48 to 4.23mg/mL (21.6%), respectively].

In T2DM patients basal adiponectin was
lower than in controls.
Pitavastatin significantly decreased
TC and LDL-C. No differences in CRP,
platelet-derived microparticles and
sP-selectin.

Nomura [285] 75 hyperlipidemic patients
with and without T2DM vs
35 normolipidemic controls.

Pitavastatin 2mg/day for
6 months.

Pitavastatin significantly increased adiponectin in
hyperlipidemic T2DM patients [baseline vs 3 and
vs 6 months: 2.81 vs 3.84mg/mL (36.7%) and
vs 4.61mg/mL (64.1%)].
Adiponectin was lower in hyperlipidemic
patients vs controls.

Significant correlation adiponectin/sE- and
sL-selectin in T2DM patients.
Pitavastatin significantly decreased TC
and LDL-C.
sE- and sL-selectin decreased in
hyperlipidemic diabetics.
No differences in MCP-1, RANTES and
sCD40L.

Matsubara [286] 94 HC patients, with (62)
or without (32) metabolic
syndrome.

Pitavastatin 2mg/day for
12 weeks.

In patients with metabolic syndrome,
HMW-adiponectin did not change. When
divided in two subgroups according to
% change in HDL-C, a significant increase
in HMW-adiponectin (18%) was observed in
the HDL-C �10% increase subgroup vs the
HDL-C <10% increase subgroup (−4%).

In patients with metabolic syndrome,
plasma hs-CRP was significantly higher
and HMW-adiponectin significantly
lower than in those without. Baseline
HMW-adiponectin and HDL-C
significantly correlated in patients with
metabolic syndrome.

Nomura [287] 68 hyperlipidemic patients
vs normolipidemic controls

Pitavastatin 2mg/day for
6 months.

Pitavastatin significantly increased adiponectin
from 3.49 to 4.36mg/mL (24.9%).
Significant decreases in plasma PAI-1 and
sCD40L after pitavastatin in adiponectin
responders.

Hyperlipidemic patients had higher
plasma CD40L, sP-selectin and PAI-1 and
lower adiponectin.
No significant differences in
plasma sCD40L, sP-selectin and PAI-1
before and after treatment.

See Table 1 for abbreviations.
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Table 6

Effect of different statin regimens on adiponectin in clinical studies

First author [ref.] Patients Drug, duration and dose Effect on adiponectin Other effects

Toyama [288] 28 CAD patients. Rosuvastatin (n = 14) or
atorvastatin (n = 14) combined
with regular exercise, for
20 weeks.

Increased serum HMW adiponectin.
These changes correlated significantly
with those in eGFR.

Increased eGFR and decreased CRP.

Qu [289] 69 HC patients. 10mg/day of atorvastatin or
rosuvastatin for 12 weeks.

Adiponectin increased from baseline,
11.74 to 13.55mg/mL (15.4%)
with atorvastatin and 9.82 to
16.46mg/mL (67.6%) with rosuvastatin.

Both statins lowered CRP, MMP-9, PAI-1, TC
and LDL-C from baseline.
Rosuvastatin lowered TC and LDL-C to a
greater extent.

Ando [290] 36 HC patients
without known CHD.

Pravastatin or atorvastatin
10mg/day for 4 months, then
switch to the other statin for
additional 4 months.

Atorvastatin increased (2.8%) serum
adiponectin vs pravastatin. In the
whole population: pravastatin from
10.7 to 10.5mg/mL; atorvastatin from
10.7 to 11mg/mL.

Atorvastatin significantly reduced TC, LDL-C,
TG, CRP and TNF-a, with no benefits on
insulin sensitivity.
HbA1c increased only in obese patients after
atorvastatin.

Kurogi [60] 129 patients with stable CAD,
HC and HDL-C <50mg/dl.

Pitavastatin 2–4mg/day or
atorvastatin 10–20mg/day for
30 months.

Pitavastatin increased adiponectin
[from 10.14 to 12.79mg/mL (26.1%)]
significantly more than atorvastatin
[from 9.07 to 9.74mg/mL (7.4%)].

Pitavastatin increased HDL-C.
Neither statin had a significant effect on
HbA1c.

Anagnostis [291] 36 non-diabetic and
dyslipidemic patients.

Rosuvastatin 10mg/day (n = 18)
or atorvastatin 20mg/day
(n = 18) for 12 weeks.

No differences in adiponectin levels
after 4 and 12 weeks of either statin.

Both statins significantly lowered TC, LDL-C,
non-HDL-C and TG.
Rosuvastatin significantly reduced insulin and
HOMA-IR.

Thongtang [292] 252 hyperlipidemic patients. Atorvastatin 80mg/day or
rosuvastatin 40mg/day for
6 weeks.

No significant differences between
the 2 groups in adiponectin from
baseline (−1.5% atorvastatin vs
−4.9% rosuvastatin).

Both statins lowered LDL-C and TG.
Rosuvastatin increased HDL-C more than
atorvastatin.
Both drugs significantly increased CRP and
insulin.
Atorvastatin increased HbA1c.

Bellia [293] 27 well-controlled T2DM
patients.

Rosuvastatin 20mg/day or
simvastatin 20mg/day for
6 months, then switch to the
other statin for additional
6 months.

Both statins did not significantly affect
adiponectin levels.

Marked reduction in lipid levels HOMA-IR,
leptin, CRP.
No changes in insulin sensitivity and
significant increase in HbA1c after 12 months
with both statins.

Ohashi [294] 238 patients with acute
coronary syndrome.

IVUS-guided PCI followed by
treatment with pitavastatin and
atorvastatin.
Follow-up IVUS between 8 and
12 months after PCI.

Adiponectin significantly increased
with statin treatment [from
7.8 to 10.3mg/mL (32%)] at the
8–12 months follow-up. At baseline,
adiponectin correlated positively with
HDL-C and negatively with TG.

Increase in adiponectin correlated with an
increase of HDL-C and decrease of TG.

Koh [295] 43 HC patients. Placebo, simvastatin 20mg/day
or pravastatin 40mg/day for
2 months.

Simvastatin significantly decreased
plasma adiponectin [from
5.8 to 5.2mg/mL (−10.3%)], but
pravastatin significantly increased it
[from 5.6 to 6.1mg/mL (8.9%)].

Simvastatin and pravastatin significantly
improved lipid profile and FMD.
Simvastatin significantly increased insulin and
leptin.

Kai [296] 27 dyslipidemic patients with
mild hypertension.

Initially simvastatin 10mg/day
6 months or more, then
pravastatin 20mg/day.

The switch simvastatin/pravastatin
significantly increased
serum adiponectin from
11.9 to 13.1mg/mL (10.1%), in the
absence of differences in LDL-C and
blood pressure.

The switch from simvastatin to pravastatin
caused little changes in LDL-C and blood
pressure, but significantly decreased CRP.

Bellia [297] 29 middle-aged patients with
T2DM and mild untreated
dyslipidemia.

Rosuvastatin or simvastatin
20mg/day for 4 weeks.

No changes in adiponectin, fasting
glucose and insulin sensitivity in both
groups.

Marked reduction of LDL-C.
Simvastatin improved FMD better than
rosuvastatin.

Tsutamoto [298] 71 stable outpatients with
ischemic congestive heart
failure, already on standard
therapy for the pathology.

Simvastatin 5mg/day (n = 35)
or rosuvastatin 2.5mg/day
(n = 36) for 4 months.

Simvastatin did not change plasma
adiponectin, but rosuvastatin
significantly increased it from
12.3 to 14.0mg/mL (13.8%).

oxLDL did not change and HbA1c level
slightly increased with simvastatin.
Reduction in oxLDL and HbA1c with
rosuvastatin.

Nomura [299] 135 hyperlipidemic patients. Simvastatin 10mg/day (n = 63),
or pitavastatin 2mg/day (n = 72)
for 6 months.

Significant increase in plasma
adiponectin with pitavastatin [from
3.53 to 4.36mg/mL (23.5%)]
but not with simvastatin [from
3.51 to 3.59mg/mL].

According to adiponectin response to
pitavastatin, significant decreases of MCP-1
and sCD40L in responders.

Koh [300] 54 HC patients. Rosuvastatin 10mg or
pravastatin 40mg/day vs
placebo for 2 months.

Rosuvastatin significantly (−9%)
decreased, while pravastatin
significantly (36%) increased plasma
adiponectin.

Rosuvastatin significantly increased HbA1c,
fasting insulin and insulin sensitivity.
Pravastatin significantly decreased fasting
insulin, HbA1c, and insulin sensitivity.
Rosuvastatin reduced TC, LDL-C and apo B
significantly more than pravastatin.

continued on next page
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Table 6

(continued )

First author [ref.] Patients Drug, duration and dose Effect on adiponectin Other effects

Yokoyama [301] 50 patients undergoing surgery
for CAD (n = 36) vs valvular
heart disease (VHD) (n = 14).

23 patients with CAD
and LDL-C >100mg/dL
were treated with
pravastatin 10mg/day (n = 12)
or rosuvastatin 2.5mg/day
(n = 11) for 2 months.
13 patients with CAD and
LDL-C <100mg/dL and those
with VHD without CAD were
not treated.

At baseline, adiponectin was lower in
CAD vs VHD patients.
Pravastatin increased total
adiponectin in CAD from
3.28 to 7.16mg/mL (118%);
HMWA from 1.13 to 3.29mg/mL;
MMWA from 1.03 to 1.24mg/mL;
LMWA from 1.37 to 2.15mg/mL.
Rosuvastatin increased total adiponectin
from 2.95 to 3.32mg/mL (12.5%);
HMWA from 0.81 to 1.28mg/mL;
MMWA from 0.97 to 0.97mg/mL;
LMWA from 1.03 to 1.34mg/mL.

Visceral adipose tissue and gene expressions
of adiponectin in the pravastatin and VHD
groups were similar and higher than in the
non-statin and rosuvastatin groups.
Protein carbonyl in visceral adipose tissue was
lower in pravastatin and VHD vs rosuvastatin
and non-statin.

Mita [65] 28 Japanese T2DM and HC
patients.

Before entry,
rosuvastatin 2.5mg/day. Then:
Group A, pitavastatin 2mg/day
for 12 weeks, then
atorvastatin 10mg/day for
12 weeks. Group B: reverse
scheme.

No variations and no differences in
adiponectin concentrations.

Similar lipid control with both statins.
Pitavastatin significantly lowered
glycoalbumin, fasting glucose and
insulin resistance vs atorvastatin.

See Table 1 for abbreviations.
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Fig. 5. Possible mechanism of the beneficial effect of pitavastatin on new-onset diabetes.

Box 8. Pitavastatin and HDL-C

– Beneficial effects on HDL-C by pitavastatin are consistent in experimental models and in clinical studies (Table 7).

– In HepG2 cells and rat liver, pitavastatin, but not atorvastatin, increases ABCA1 and plasma HDL, by a PPARa-mediated effect [311].
– Pitavastatin, atorvastatin and simvastatin, but not pravastatin, increase ABCA1 mRNA and ABCA1-mediated efflux to apoA-I in hepatoma cells

and rat livers (a PPARa-, g- and SREBP-2-mediated effect). Only pitavastatin also increases ABCA1 protein by PPARa-mediated ABCA1
stabilization [96,312,313].

– Pitavastatin induces apoAI-dependent cholesterol efflux from slow-turnover adipose tissue pools [63,314].
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Table 7

Clinical studies assessing the effect of pitavastatin on HDL

First author [ref.] Patients and treatment Effect

Ishigaki [315] 97 HC and T2DM patients treated with
pitavastatin 1–2mg/day (n = 51) or
pravastatin 10mg/day (n = 46) for 3 years.

Pitavastatin and pravastatin decreased LDL-C (−37.2% vs −25%) and
increased HDL-C (5.7% vs 4.5%), while fasting blood glucose increased by
2.2% vs 15.8%, respectively.

Kakuda [316] 129 patients with dyslipidemia treated with
atorvastatin 10mg/day, pitavastatin 2mg/day or
rosuvastatin 2.5mg/day.

Despite comparable effect on LDL-C lowering, pitavastatin was the most
effective in increasing HDL-C and Apo A-I mass.

Miyamoto-Sasaki [317] 30 patients with dyslipidemia treated with
pitavastatin 2mg/day for 4 weeks.

Pitavastatin elevated HDL-C, cholesterol efflux and antioxidant properties of
HDL.

Kurogi [60] 129 patients with stable CAD, HC and
HDL-C <50mg/dl treated for 20 months with
pitavastatin or atorvastatin.

Long-term pitavastatin significantly increased ApoAI and HDL-C (20.1%) vs
atorvastatin (6.3%).

Ibuki [318] 20 patients (age 66±8 years) previously treated with
statins but with HDL-C <40mg/dL, switched to
pitavastatin (2mg/day).

Pitavastatin further improved lipid profiles and led to better myocardial
protection, possibly via HDL-C elevation.

Teramoto [319] 6,582 patients treated with pitavastatin for 104
weeks.

Pitavastatin significantly increased HDL-C (5.9% in all patients;
24.6% in those with HDL-C <40mg/dL at baseline). Elevations in
low-HDL-C group 14.0% and 24.9% at 12 and 104 weeks.

Eriksson [48] 330 primary HC or combined dyslipidemic patients
and at least two CHD risk factors treated with
pitavastatin 4mg (n = 223) or simvastatin 40mg
(n = 107) for 12 weeks.

Pitavastatin provided a greater increase in HDL-C vs simvastatin.

Gumprecht [49] 279 patients treated with pitavastatin 4mg or
atorvastatin 20mg (n = 139) daily for 12 weeks.
Treatment continued for further 44 weeks if lipid
targets not reached at week 8.

No significant changes between patients treated with pitavastatin or
atorvastatin.

Maruyama [320] 743 consecutive patients who underwent PCI
retrospectively investigated.

Atorvastatin or pitavastatin significantly reduced LDL-C compared with
pravastatin or no statin. Only pitavastatin treatment significantly increased
HDL-C (13.4%).

Shimabukuro [53] Patients with T2DM, HC and/or HTG treated with
pitavastatin 2mg (n = 16) or atorvastatin 10mg
(n = 15) for 6 months.

HDL-C increased after 1, 3 and 6 months of pitavastatin, whereas it even
decreased after 6 months of atorvastatin. Pitavastatin increased cholesterol of
medium HDL subclass.

Yanagi [54] 90 Japanese patients with T2DM and hyperlipidemia
treated with rosuvastatin 2.5mg/day or
pitavastatin 2mg/day

Rosuvastatin had a more potent LDL-C-lowering and CRP-lowering effect
compared with pitavastatin. Both statins lowered TG and increased HDL-C.

Fujioka [321] 83 patients treated with pitavastatin 1–2mg/day for
12 months.

Pitavastatin significantly reduced TC and LDL-C (18.3% and 30.1%). HDL-C
levels significantly increased at 6 months (11.9%).

Ose [322] 1,353 patients with primary HC or combined
dyslipidemia treated with pitavastatin 4mg/day for
up to 52 weeks.

HDL-C levels rose continually during follow up, increasing by 14.3% over
baseline.

Teramoto [323] 20,279 HC patients treated with pitavastatin for
104 weeks.

In time-course analysis, HDL-C in patients with low HDL-C increased
continuously (14.0% and 24.9% at 12 and 104 weeks, respectively).

Motomura [56] 65 Japanese T2DM patients were administered
pitavastatin 2mg/day and completed a 6-month
follow-up.

HDL-C significantly increased after 1 month and remained at the higher level
for 6 months.

Fukutomi [324] 43 HC patients with low HDL-C treated with
pitavastatin for 12 months.

Pitavastatin significantly and persistently increased HDL-C (from 36.0 to
40.5mg/dL) and apoA-I (from 108.4 to 118.7mg/dL).

Koshiyama [58] 178 Japanese HC patients (103 with T2DM) treated
with pitavastatin 12mg/day for 12 months.

Serum HDL-C levels significantly increased.

Sasaki [59] 88 Japanese patients with elevated LDL-C
and glucose intolerance treated with
pitavastatin 2mg/day and 85 with
atorvastatin 10mg/day for 52 weeks.

Change in HDL-C was significantly greater after pitavastatin vs atorvastatin
(8.2% vs 2.9%). Similar changes in ApoA-I (5.1% vs 0.6%).

Yokote [325] Japanese patients with TC �220mg/dL received
pitavastatin 2mg (n = 126) or atorvastatin 10mg
(n = 125) for 12 weeks.

HDL-C increased after 12 weeks with pitavastatin (3.2%) but not with
atorvastatin.

Kawano [326] 29 HC patients treated with pitavastatin 2mg/day
for 4 weeks.

HDL-C and HDL(2)-C increased significantly by 6.0% and 9.0%, with no
change in HDL(3)-C. While Prebeta 1-HDL decreased significantly (−8.7%),
its disappearance rate increased significantly (13.0%). Pitavastatin may
promote early steps of reverse cholesterol transport.

Lee [327] 222 Korean patients treated with
pitavastatin 2mg/day or atorvastatin 10mg/day.
Patients not at LDL-C goal by week 4 received a
double dose of the drug for additional 4 weeks.

No significant differences between groups in LDL-C, TC, TG and HDL-C.

Yoshitomi [328] 137 HC patients treated with pitavastatin or
atorvastatin.

No significant differences between the groups in TC, LDL-C and HDL-C.

Park [329] 49 Korean patients treated with pitavastatin 2mg/day
and 46 with simvastatin 20mg/day for 8 weeks.

Pitavastatin was non-inferior to simvastatin in terms of reducing LDL-C,
TC and TG and increasing HDL-C.

Saito [330] 240 patients received pitavastatin 2mg/day or
pravastatin 10mg/day for 12 weeks.

Pitavastatin significantly lowered LDL-C (−37.6%) vs pravastatin (−18.4%).
Pitavastatin also significantly reduced TG, apo B, C-II and C-III, compared
with pravastatin, and increased HDL-C, apo A-I and A-II, to the same extent
as pravastatin.

See Table 1 for abbreviations.
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